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Matrix fracture strength in bonded brittle composites
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It has been recognized that the fiber/matrix interface
plays a key role on the mechanical performance of fiber
reinforced brittle matrix composites [1, 2] (e.g., matrix
cracking strength, debonding strength and work of frac-
ture etc.). On the problem of matrix cracking modeling
for bonded fibers, Budiansky, Hutchinson, Evans (BHE)
[3] investigated the matrix cracking stress caused by the
crack-tip transverse tensile stress (see Fig. 1). The BHE
analysis considers that the debonded region caused by
the crack-tip transverse tensile stress is separated (i.e.
τ s=0) and assumes the debonded length is unchanged as
the matrix crack continually propagating. The possible
interfacial debonding process in the crack-wake region
was not considered in their modeling. By treating the
crack-wake debonding as a particular crack propagating
problem, Chiang [4] extended Aveston, Cooper and Kelly
(ACK) [5] model to include the effect of crack-wake
debonding on the stress for onset of steady-state matrix
cracking. However, as similar to the ACK model that
neglects the elastic response above the slipping region,
the Chiang result cannot approach to the no-debond
result by Aveston and Kelly (AK) [6] as the no-debond
condition is met. In this paper, the BHE model that
takes into account the elastic response above the slipping
region is extended to include the effect of crack-wake
debonding for bonded brittle composites. A fracture
mechanics approach in which the crack-wake debonding
is treated as a particular crack propagation problem is
adopted in the present analysis. Similar to the BHE model
that provides results to bridge the extensive slip result by
ACK and the no-slip result by AK, the present analysis
provides the link between the result of frictionless bonded
interface by Stang and Shah [7] and the no-debond result
by AK. The difference between the present analysis and
Sutcu and Hillig [8], in which the debonding mechanics
is approached by energy balance method, will be dis-
cussed regarding mathematical modeling and theoretical
results.

The composite with fiber volume fraction Vf loaded
by a remote uniform stress σ normal to a semi-infinite
crack plane is shown in Fig. 1. The downstream region
(see Fig. 1) is sufficiently behind the crack-tip so that
the stress and strain fields are uniform with respect to
the crack plane. In the debonded length (i.e. 0 ≤ zld), the

fiber-matrix interface is resisted by a constant frictional
shear stress τ s and the fiber and matrix axial stresses are
governed by

σ D
f (z) = σ

Vf
− 2τs

a
z (1)

σ D
m (z) =

(
Vf

Vm

)
2τs

a
z (2)

where a is fiber radius and Vm (=1-Vf) is the matrix
volume fraction.

A fiber/matrix debonding process in the downstream re-
gion is schematically shown in Fig. 2, in which a debonded
fiber is loaded by tractions T and τ s with corresponding
fiber and matrix displacements dv and dw, respectively.
Following the arguments of Gao, Mai and Cotterell [9]
and Stang and Shah that the fracture mechanics approach
is preferred to the shear stress approach for the interfacial
debonding problem, the fracture mechanics approach is
adopted in the present analysis. The stresses in the boned
length (i.e. z ≥ ld) were given by Chiang [10]:

σ D
f (z) = 2K τs

ρ
e−ρ(z−ld)/a + Ef

E
σ + σ I

f (3)

σ D
m (z) = −2K τs

ρ

(
Vf

Vm

)
e−ρ(z−ld)/a + Em

E
σ + σ I

m (4)

τD
i (z) = K τs e−ρ(z−ld)/a (5)

where σ I
f and σ I

m are, respectively, the residual axial
stresses in the fiber and the matrix, which satisfy

Vfσ
I
f + Vmσ I

m = 0 (6)

The remaining quantities Ef and Em are the fiber and
matrix Young’s moduli and E is the effective axial Young’s
modulus of composite which can be approximated by the
rule-of-mixtures

E = Vf Ef + Vm Em (7)
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Figure 1 Schematic representation of crack-tip and crack-wake debonding.

The debonded length ld in Equations (3–5) is given by

ld = aVm Em

2Vf Eτs

(
σ + (E/Em)σ I

m

) − a

ρ
K (8)

where

ρ =
√

2Gm E

Vm Em Efβ
(9)

The quantity of β, which depends only on volume frac-
tions, is defined by BHE as

β = −2 ln Vf + Vm(3 − Vf)

4V 2
m

(10)

and

K = 1

2

(
1 +

√
1 + 4ρ2Vm Em Ef

aE

(
ζd

τ 2
s

))
(11)

where ζ d is the debond toughness.
The upstream region (see Fig. 1) is so far away from the

matrix crack tip such that the stress and strain fields are
the same as those of the uncracked materials. The fiber
and matrix axial stresses can be well approximated by

σ U
f (z) = Ef

E
σ + σ I

f (12)

σ U
m (z) = Em

E
σ + σ I

m (13)

The energy relationship to evaluate the steady-state ma-
trix cracking stress is expressed as (BHE [3])

1

2

∞∫
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f − σ D
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)2 + Vm
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(
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+ 1
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a

(
aτD

i

r

)2

2πrdrdz=Vmζm (14)

where Gm is the matrix shear modulus and ζ m is the
matrix fracture toughness. Substituting the downstream
stresses and the upstream stresses given, respectively, by
Equations 12–13 and 3–4 with the debonded length ld
given by Equation 8, yields the standard algebraic form
of cubic equation

B3(σ + σ I
m E/Em)3 + B1(σ + σ I

m E/Em)

+B0 = 0 (15)

where

B3 = a

Efτs

(
Vm Em

Vf E

)2

(16-1)

B1 = 12
aτs

ρ2 Ef
(16-2)

B0 = −8
aVf Eτ 2

s

ρ3Vm Em Ef

[
(K−1)3+1

] −6Vmζm (16-3)
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Figure 2 A composite-cylinder model.

The cubic equation of Equation 15 can be solved by
Cardan’s solution as
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=
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(17)

The well-known ACK stress σ 1 for larger slipping fibers
can be recovered from Equation 17 by setting ζ d = 0 and
dropping the (1/ρ) terms due to the negligence of matrix
shear deformation above the slipping region:

σ1 =
(

6V 2
f Ef E2τζm

aVm E2
m

)
(18)

The stress σ 0 for no-debond interface given by Aveston
and Kelly (AK) is given by

σ0 =
(

ρVf Ef E

aEm
ζm

)1/2

(19)

From definitions of the ACK stress σ 1 by Equation 18
and the AK stress σ 0 by Equations 19, Equation 17 can
be arranged into a dimensionless form as

σmc + σ I
m E/Em

σ0
= {X + [X2 + (Y 18/729)]1/2}1/3

− {−X + [X2 + (Y 18/729)]1/2}1/3 (20)

where

Y = σ1
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and
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For purely frictional interface (i.e. ζ d = 0), Equation
20 reduces to the BHE result as

σmc + σ I
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By substituting Equation 20 of the dimensionless form
of critical matrix cracking stress into Equation 8, the
debonded length ld can be expressed as a dimensionless
form of

ld

a
= 3

ρY 3

(
σ + σ I

m E/Em

σ0

)

− 1

2ρ

[(
1+144

Y 6

(
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ρVm

)(
ζd

ζm
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]
(24)

Sutcu and Hillig [8] have used an energy balance ap-
proach to treat the fiber/matrix debonding problem and
developed a critical matrix cracking stress formulation
that is identical to Equation 20 except for the expression
of X by

X = Y 9

54
+ Y 3

2
+ 4

(
Vfζd

ρVmζm

)3/2

(25)

T AB L E I Properties of SiC/LAS composite

SiC/LAS

Ef 200 Gpa
Em 85 Gpa
νm 0.25
a 8 µm
ζm 47 J/m2

τ s 1–2 MPa
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Figure 3 [σmc + (E/Em)σ I
m]/σ0 vs. Y = Cτ s

1/3 at different ζ d/ζm for SiC/LAS at V f = 0.5.

Figure 4 Comparison of the results between the present analysis and Sutcu and Hillig for [σmc + (E/Em)σ I
m]/σ0 vs. Y = Cτ s

1/3 at different ζ d/ζm for
SiC/LAS at V f = 0.5.

The comparison of the relative critical matrix crack-
ing stress, [σmc + (E/Em)σ I

m]/σ0, as a function of the
dimensionless friction parameter Y=Cτ s

1/3 for different
relative debond toughness, ζ d/ζ m, for SiC/LAS compos-
ite (see Table I) is illustrated in Fig. 3. As similar to the
case of the purely frictional interface (i.e. ζ d = 0), that
is equivalent to the BHE result, the present analysis pro-
vides the smooth link between the result of frictionless
bonded interface by Stang and Shan and the no-debond
result by AK. The comparison between the present analy-
sis and Sutcu and Hillig is illustrated in Fig. 4, in which the
present analysis provides the tangential approaches to the
no-debond limits. On the other hand, the curves predicted

by Sutcu and Hillig for bonded interfaces are secant lines
at the no-debond limits, as shown in Fig. 4. Compared to
the Sutcu and Hillig model, the results by present anal-
ysis are shown to be more rational on the perspective of
mathematical rigorousness.

A fracture mechanics approach in which the crack-wake
debonding process is treated as a particular crack propaga-
tion problem is adopted in the present analysis. The newly
derived closed-form solution of critical matrix cracking
stress given by Equation 20 represents more general inter-
facial properties of composite. Similar to the BHE model
that provides results to bridge between the large-slip result
by ACK and the no-slip result by AK, the present analysis

576



provides the smooth link between the result of frictionless
bonded interface by Stang and Shan and the no-debond
result by AK. The differences of mathematical modeling
and theoretical results between the present analysis and
Sutcu and Hillig have been shown and discussed.
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